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Introduction

A basic empirical question in industrial organization is the following: which products in a differ-

entiated product market are close competitors with one another. This closeness of competition

between two products is determined by the degree of consumer substitutability between them. The

measurement of substitution patterns is central to empirical Industrial Organization because it

enters many supply side questions of interest. For example, the variation in substitution patterns

among the products in a market can be used to study firm “conduct”: if there is a high degree

of substitutability between the products of rival firms, then markups (and hence prices) should be

systematically lower for these products when firms are competing as compared to colluding (Bres-

nahan 1981, Bresnahan 1987). Furthermore, for any particular hypothesis about firm conduct,

substitution patterns drive the effect of counter-factual policy changes on market outcomes, such

as mergers, new product introductions, etc.

Although substitution patterns are central to empirical work in imperfectly competitive mar-

kets, identifying these substitution patterns from market price and quantity data has proven very

challenging.

The mixed-logit model of demand made famous by Berry et al. (1995) (henceforth BLP for

short) can in principle approximate very rich substitution patterns by relaxing the strong ex-ante

restrictions that the simple logit places on cross price elasticities (most notably the independence
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of irrelevant alternatives, aka IIA). This is achieved by allowing consumers to have unobserved

taste heterogeneity for observed product characteristics, i.e., random coefficients in utility. While

their approach has been hugely influential in providing a framework for studying differentiated

product markets, there are very few direct applications (known to us) that have found statistically

and/or economically significant departures from the simple logit in practice. The most prominent

applications that have successfully recovered non-trivial substitution patterns either use information

that is ”external” to the mixed logit demand structure, such as supply restrictions (see e.g., Berry

et al. (1995), Berry et al. (1999), Eizenberg (2014)), micro moments (see e.g., Petrin (2002),

Nielson (2013)), or second choice data (see e.g., Berry et al. (2004), Hastings et al. (2009)), or

use more restrictive models of product differentiation such as the nested-logit or GEV models (e.g.

Verboven (1996), Bresnahan et al. (1997)).

This user experience has led to a growing questioning of whether consumer heterogeneity in

mixed-logit demand systems is even identified with market level data on prices and quantities (see

e.g., Metaxoglou and Knittel (2014)). A related challenge for empirical work is that, given the

inherent non-linearity of the model, it has been difficult to pinpoint the fundamental variation

in the data that drive estimates of substitution patterns in applications. Thus policy conclusions

drawn from the model cannot be directly linked to moments in the data that are driving those

conclusions (see e.g., Angrist and Pischke (2010)). This has led some to abandon structural demand

models altogether in favor of natural experiments to study policy questions in differentiated product

markets (see e.g., Ashenfelter et al. (2009)).

In this paper we argue that a potential source for the challenges faced in applied work are

weak instruments, and we present a solution to this problem based on a new approximation of the

optimal instruments.

Berry and Haile (2014) showed that the parameters governing substitution patters can be iden-

tified under fairly general conditions by imposing conditional moment restrictions between the

unobserved and observed product characteristics. Letting wt = {w1t, . . . ,wJt,t} denote the set of

exogenous characteristics available in market t, these restrictions are in practice imposed by form-

ing unconditional moment conditions between instruments Aj(wt), and the unobserved quality of

each product computed from the inverse-demand function:

E
[
σ−1
j (st,xt|θ)− xtβ

∣∣wt

]
= 0→ E

[(
σ−1
j (st,xt|θ)− xtβ

)
·Aj(wt)

]
= 0, (1)

where xjtβ is the average net quality of product j in market t predicted by the model.

An instrument corresponds to a product specific transformation of the entire menu of observed

product characteristics in the market. A first order problem for empirical work is deciding how such

instruments should be constructed from the data. Our first key point is that the form, Aj(·), of

these instruments matters crucially for empirical work - picking arbitrary transformation, or even

seemingly intuitive transformations, can readily lead to a weak IV problem which we demonstrate
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by way of a simple visual simulation. Weak instruments can explain many of the aforementioned

challenges in empirical work. We illustrate this through a series of Monte-Carlo simulations. Using

moment conditions commonly used in the literature, we reproduce many of the numerical and

estimation problems discussed above, and formally test the weakness of the instruments.

To avoid weak instruments we need to understand how to construct “strong” instruments.

The classic results of Amemiya (1977) and Chamberlain (1987) reveal the form of the optimal

instruments that achieve the semi-parametric efficiency bound of the model. Although the optimal

instruments themselves are infeasible to construct directly from the data, strong instruments that

perform well in finite samples will approximate the conditional expectation in equation 1 that

defines the reduced-form of the model (as established by e.g., Newey (1993), Ai and Chen (2003),

Donald et al. (2003)).

A fundamental problem however for constructing such approximations from the data is that

the optimal instruments are a function of all the observed product characteristics in a market,

and hence even low order approximations to the reduced-form (linear or quadratic) lead to basis

function that grow exponentially large in number with the number of products. This can be seen

in equation 1: the number of arguments used to define the conditional expectation is proportional

to the number of characteristics and the number of products. In typical applications, this number

is ofter larger than 1,000, and is proportional to the sample size. This curse of dimensionality has

made it impossible to apply insights from the literature on efficient estimation with conditional

moment restrictions to the problem of estimating demand for differentiated products.

Our main theoretical contribution is to show that this curse of dimensionality can be solved by

using the implicit restrictions that the demand structure of the model places on the reduced-form of

the model. In particular we show that the symmetry property implicit in any linear random-utility

model implies that the most efficient instruments for a given product/market observation in the

data is a vector symmetric function of the differences between a given product’s observed product

characteristics and its competitors observed product characteristics. This theoretical result has

a powerful Corollary: a finite order approximation to the optimal instrument can be expressed

through basis functions that are functions of only these characteristic differences, and importantly

the number of basis functions is invariant to the number of products in the market. It is this latter

result that breaks the curse of dimensionality in approximating the optimal instrument.

Importantly, this characterization of the reduced-form does not depend on the distribution of

the random-coefficient, or on the value of the parameters. Therefore, the same instruments can

be used to estimate different models of product differentiation, and to test between alternative

specifications (e.g. correlated random-coefficients, different distributional assumptions, etc.). This

is an important advantage of our approach over alternative two-step approximations to the optimal

instruments that require obtaining consistent estimates of the parameters, and rely on a correctly

specified model to be valid.
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The basis functions themselves are economically meaningful – they capture the relative isolation

of each product in characteristic space – and have not yet been systematically exploited in empirical

work. If we apply these basis functions directly as instruments in a GMM estimation we can

approximate (arbitrarily well) the performance of the optimal instruments (following Theorem 5.2

in Donald et al. (2008)).1 Our Monte-Carlo simulation results show that exogenous measures

of product differentiation, or Differentiation IVs, lead to substantial improvements in the small

sample performance of the GMM estimator. In particular, we illustrate that simple forms of those

instruments can eliminate the weak identification problem, and identify rich models of substitution

patterns with large numbers of random-coefficients and correlated taste shocks.

Related Literature

Our IV’s are a natural complement to the large literature on price instruments in differentiated

product markets. Price endogeneity is a familiar problem in the literature with a long history, and

a variety of instruments have now been proposed to address it, i.e, BLP instruments, Haussman

instruments, Waldfogel instruments, etc.2 However, a key point in Berry and Haile (2014) is that the

identification of substitution patterns poses a distinct empirical problem from price endogeneity.3

This is because there are in fact two different sets of endogenous variables in the model - prices

and market shares - which require different sources of exogenous variation for the model to be

identified. However the literature has been virtually silent about the appropriate form of the

instruments for market share? We believe the root of the problems encountered in empirical

practice is that there does not exist any formal discussion of how to construct such instruments, and

thus researchers have used a single set of instruments, namely price instruments - i.e., instruments

constructed on the basis of what should vary price in the model - as instruments for both prices and

markets shares. Our approximation is based on first isolating the endogeneity problem induced by

market shares, which is the key that allows us to derive the vector symmetric form of the optimal

instrument. Our approach however naturally extends to allowing for endogenous prices. This

extension combines our approximation with the Berry et al. (1999) approach to optimal IV that was

revisited recently by Reynaert and Verboven (2013), and shows that these alternative perspectives

1An alternative approach to deal with weak instruments is to estimate the model using estimators that are robust
to weak identification (e.g. Stock and Wright (2000)). Conlon (2013) for instance describes the properties of an
Empirical Likelihood-based estimator applied to BLP, and demonstrates a weak identification problem associated
with commonly used instruments.

2Price endogeneity is linked directly to the classic simultaneous equations problem of prices and quantities being
simultaneously determined in market equilibrium and is common to both homogenous good and differentiated product
markets. A natural instrument for prices is to use a cost side instrument, but such cost instruments are often not
immediately available. The well known “BLP instruments” provide an alternative source for variation in prices in
differentiated product settings that is based on a first order approximation of the equilibrium pricing function. BLP
IV’s comprise of sums of product characteristics of competing products interacted with ownership structure, and are
the standard instruments used in mixed logit demand applications.

3Although they consider a non-parametric form of the model, this conclusion applies with equal force to the
standard parametric specification used in practice.
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are indeed complementary to one another in an empirically powerful way. Our approach also

extends to settings in which the distribution of demographic characteristics vary across markets

(similar to Romeo (2010)). Finally, the instruments that we propose are similar to instruments

commonly used to identify nested-logit and spatial differentiation models.4 A key contribution

of our paper is to proposed a unifying approach to study the identification of random-coefficient

models with aggregate data.

The rest of the paper proceeds as follows. We beginning by illustrating the problems associated

with weak identification in the context of a mixed-logit model with exogenous characteristics. In

Section 2 we illustrate how symmetry of the demand can be used to solve the curse of dimensionality

problem in approximating the reduced-form of the model. We then use the symmetry property to

characterize relevant instruments that can be used to identify the parameters determining substi-

tution patterns, i.e. Differentiation IVs. Finally, in Section 3 we illustrate the small sample perfor-

mance of those instruments in different contexts, including settings with many random-coefficients,

correlated tastes, and endogenous characteristics. We also contrast our approach with the related

approximation to the optimal IVs proposed by Berry et al. (1999) and Reynaert and Verboven

(2013).

1 Baseline model: Exogenous characteristics

In order to illustrate the instrument choice problem, we consider a special case of the random-utility

model considered by Berry, Levinsohn, and Pakes (1995) [BLP], in which product characteristics

(including prices) are exogenous. We first describe the model notation that we use throughout the

rest of the paper, and discuss the identification problem. We then illustrate the problems associate

weak instruments through a simulation example.

1.1 Notation and assumptions

Consider a market t with Jt + 1 differentiated products. Each product j is characterized by a

vector of observed (to the econometrician) product characteristics xjt ∈ RK and an unobserved

characteristic ξjt. We will refer to xt = (x1t, . . . ,xJt,t) as a summary of the observed market

structure - the entire menu of observed product characteristics available to consumers in market t

(i.e. Jt × K matrix). Similarly, st = {s1t, . . . , sJt,t} is the vector observed market shares, which

is defined such that 1 −
∑Jt

j=1 sjt = s0t is the market share of the “outside” good available to all

consumers in market t. We normalize the characteristics of the outside good such that x0t = 0 and

ξ0t = 0.5

4See in particular Berry (1994), Bresnahan et al. (1997), Pinkse et al. (2002), Davis (2006), Thomadsen (2007),
and Houde (2012).

5Thus each characteristic can be interpreted in terms of differences relative to the outside good.
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We consider initially a model in which the unobserved quality ξjt is independent of the char-

acteristic of products available in market t. This identifying assumption takes the form of the

conditional mean restriction (CMR) defined in Assumption 1.

Assumption 1. The unobserved quality of products has mean zero conditional on the observed

menu of characteristics xt,

E [ξjt | xt] = 0. (2)

Following, Berry and Haile (2014), the product characteristics space is partitioned into two

subsets: x
(1)
jt refers to linear product characteristics, and x

(2)
jt to non-linear product characteristics.

The economic distinction between the two groups of attributes is that consumers are assumed to

have homogenous tastes for linear characteristics. Let K2 denotes the dimension of the x
(2)
jt vector.

We assume that consumers have linear preferences for product characteristics:

uijt = δjt +

K2∑
k=1

νikx
(2)
jt,k + εijt (3)

where δjt = x′jtβ + ξjt is labelled the “mean utility” of product j, and εijt ∼ T1EV(0, 1) is the an

idiosyncratic utility shock. According to this specification, the taste of consumer i for characteristic

k belonging to x
(2)
jt is given by βk+νik. The random-coefficients vector, νi, is distributed according

to a density function φ(·;λ), where λ is a vector of non-linear parameters to be estimated.6

If each consumer i chooses the product that maximizes his/er utility, we can integrate over the

distribution of consumer random utilities to construct the demand function for product j:

σj

(
δt,x

(2)
t ;λ

)
=

∫ exp
(∑

k vikx
(2)
jt,k + δjt

)
1 +

∑nt
j′=1 exp

(∑
k vikx

(2)
j′t,k + δj′t

)φ(νi;λ)dνi (4)

where x
(2)
t =

(
x

(2)
1t , . . . ,x

(2)
nt,t

)
and δt = (δ1t, . . . , δnt,t).

Following Berry (1994), the inverse demand function is used to define the residual function of

the model:

sjt = σj

(
x

(2)
t , δt;λ

)
j = 1, . . . , Jt

⇐⇒ ρj (st,xt;θ) = σ−1
j

(
st,x

(2)
t ;λ

)
− xjtβ j = 1, . . . , Jt (5)

where θ = (β,λ) is the full parameter vector of dimension m. Existence and uniqueness of the

inverse demand, σ−1
j (·), follows directly from Berry (1994), Berry, Levinsohn, and Pakes (1995).

See also Berry, Gandhi, and Haile (2013) for a general proof that does not rely on the type-1

6Note that this density is assumed to be common across market. We relax this assumption below when studying
the role of demographic characteristics variation across markets.
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extreme-value distribution assumption of εijt.

1.2 Identification and estimation

Equation (5) highlights the need for instruments. Intuitively, since consumers observe ξjt before

choosing which product to buy, the vector of observed market shares is correlated with the residual

at true value of the parameters θ = θ0. As discussed first by Jorgensen and Laffont (1974) and

Amemiya (1974), this implies that the non-linear least-square estimator (NLSE) of λ suffers from

a standard simultaneity bias problem (even when all x’s are exogenous). To see this, note that the

first-order conditions of NLSE with respect to λ are not satisfied at the true value of the parameters:

E

[
∂σ−1

j (st,x
(2)
t ;λ0)

∂λ
· ρj(st,xt;θ0)

]
= E

[
∂σ−1

j (st,x
(2)
t ;λ0)

∂λ
· ξjt

]
6= 0.

In the reminder of the paper, we refer to the inverse demand, σ−1
j (·), as the structural equation of

the model.

To get around this problem, Berry (1994) and Berry, Levinsohn, and Pakes (1995) propose to

estimate (β,λ) by GMM. Formally, one need to construct a vector zjt of exogenous instruments

from xt, which, consistently with the restrictions imposed by equation 2 above, satisfy the following

L > m unconditional moment restrictions:

E
[
ρj
(
st,xt;θ

0
)
· zjt

]
= 0. (6)

where θ0 denotes the m× 1 vector of parameters.

The non-linear GMM problem is defined as follows:

minθ ngn(θ)W ngn(θ)T (7)

whereW n is an L×L efficient weighing matrix, and gn(θ) = ρ(θ)TZ/n is the empirical counterpart

of the moment conditions defined in equation (6).

Since the GMM objective function is a quadratic form, the Gauss-Newton (GN) algorithm is a

computationally efficient method for finding the minimum. Each optimization step is obtained by

estimating a linear GMM problem corresponding to a linear approximation of the residual function.

Algorithm 1. Initiate the algorithm at parameter θ1. Iteration k:

1. Invert demand system at θk: ρj
(
st,xt;θ

k
)

= σ−1
j

(
st,x

(2)
t ;λk

)
− xjtβk
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2. Evaluate the Jacobian of the residual-function using the implicit function theorem:

∂ρj
(
st,xt;θ

k
)

∂θT
=

−xjt, ∂σ
−1
j

(
st,x

(2)
t ;λk

)
∂λT

 = Y jt(θ
k)

3. Compute the Guass-Newton step using linear GMM:

ρjt(θ
k) = Y jt(θ

k)b+ ejt ⇒ b̂ =
(
(Y TZ)W n(ZTY )

)−1
(Y TZ)W n(ZTρ)

4. Update parameter vector:

θk+1 = θk + b̂

5. Stop if ||b̂|| < ε. Else repeat steps 1-5.

The Gauss-Newton algorithm has good convergence properties when the moments are strong.

This is because strong instruments imply a lot of curvature in the GMM objective function, which is

therefore well approximated by a quadratic function. In contrast, weak instruments are associated

with little or no curvature in the objective function, which leads to convergence problems (see below

for numerical examples).

The Gauss-Newton algorithm also highlights the fact the model can be represented by a linear

GMM problem. Step (3) corresponds to a Gauss-Newton regression. The solution, θ̂, is implicitly

defined by setting the linear parameters of Gauss-Newton regression to zero: b̂(θ̂) = 0. This defines

a linear reduced-form for the GMM problem:

ρ(θ̂) = Zπb+ v1 (8)

J(θ̂) = Zπ + v2 (9)

where J(θ̂) is a n × |λ| matrix containing the slopes of the inverse demand with respect to each

of the non-linear parameters (i.e. Jjt,k(θ) = ∂σ−1
j

(
st,x

(2)
t ;λk

)
/∂λk), π is a K × |λ| matrix of

reduced-form parameters, and (v1,v2) are the reduced-form residuals. Standard rank conditions

for local identification of the model requires that the moment conditions contain enough excluded

instruments correlated with the slope of the inverse demand (i.e. the endogenous variables of the

model).

Berry and Haile (2014) formally showed that the demand function can be non-parametrically

identified by assuming that the unobserved product attributes are conditionally independent of the

menu of product characteristics. To see this in our context, take the conditional expectation of the

residual function defined in equation (5):

E
[
ρj(st,xt;θ

0)|xt
]

= E
[
σ−1
j

(
st,x

(2)
t ;λ0

) ∣∣∣xt]− xjtβ0 = E [ξjt|xt] = 0, (10)
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where the expectation operator is taken over the Jt endogenous variables: {s1t, . . . , sJt,t}. We

will refer to the conditional expectation of the inverse-demand function as the reduced-form of the

model.

The logic of the identification argument relies on an exclusion restriction: consumers have

homogenous tastes for at least one continuous exogenous characteristic (i.e. special regressor).

Since all characteristics included in x
(1)
jt are excluded from the structural equation σ−1

j (·) due to

the linearity of the utility function, the reduced-form of the model includes more exogenous variables

than the structural equation (i.e. inverse-demand).

Intuitively, the linear characteristics of rival products can be used as “instruments” for market

shares to non-parametrically identify σ−1
j (·). This result is important for the identification of

parametric model as well, since it clearly indicates that the conditional mean restriction implies a

large number of over-identifying restrictions. The challenge for empirical work however is how to

construct relevant instruments that are consistent with those restrictions.

1.3 Illustration of the weak identification problem

The problems of weak identification in linear IV models are well documented (e.g. Stock, Wright,

and Yogo (2002)). The weak correlation between the endogenous variables and the excluded in-

struments leads to biased estimates, and a failure of the standard asymptotic distribution approx-

imation.

The same problems arise in non-linear IV models, but are in general harder to diagnose. To see

this, recall that the model is identified if the following two conditions are satisfied:

E [ρj (st,xt;θ) · zjt] = 0 iif θ = θ0 (11)

rank

(
E

[
∂ρj (st,xt;θ)

∂θT
· zjt

])
= m (12)

The first condition refers to the global identification of model, while the second equation is concerned

with local identification.

In the context of the demand model, the two conditions ensure that the instrument variables

zjt are correlated with the inverse demand away from the true parameters values. Intuitively, the

model is identified if the IVs are able explain the assignment of the products’ unobserved qualities

when the inverse demand mapping is evaluated at the “wrong” parameter values. In contrast, the

instruments are weak if the implied inverse demand is (almost) orthogonal to the instrument vector

when evaluated away from the true parameter values.
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To fix ideas, consider the following single dimension example:7

uijt = β0 + β1x
(1)
jt + (β2 + ληi) · x(2)

jt + ξjt + εijt, j = 1, . . . , 15 and t = 1, . . . , 100

where ηi ∼ N(0, 1) and εijt ∼ T1EV(0, 1). From this example, we construct the following instru-

mental variable:

IVsum
jt =

15∑
j′ 6=j

x
(2)
j′,t

The sum of rival characteristics is a commonly used instrument in the literature (see Berry, Levin-

sohn, and Pakes (1995)).

To illustrate the weakness of this instrument with respect to λ, we beginning by plotting the

joint distribution of the instrument and the error evaluated at the “wrong” parameter value. We

focus in particular on the inverse demand function evaluated under multinomial Logit preferences:

σ−1
j (st;λ = 0) = log(sjt)− log(s0t) (Berry (1994)).

Figure 1a plots this residual quality, against the “residualized” instrument.8 Each dot represents

a product/market combination, and the line corresponds to a linear regression of ρj (st,xt;θ) on the

instrument. As the figure illustrates the sum of rival characteristics is uncorrelated with the inverse

demand evaluated at λ = 0. The R2 and the slope of the regression are both indistinguishable from

zero. In other words, the moment conditions are (nearly) satisfied away from the true parameter

value (λ0 = 4), implying that the moment restriction weakly identify the model.

Importantly, this weak identification problem is not caused by a small sample problem (N =

1500), or a lack of variation across products (as discussed in Armstrong (2014)). To illustrate both

points Figure 1b uses the same data-set to measure the correlation between the estimated residual

under multinomial logit preferences and the Euclidian distance between products.9 Unlike with the

previous instrument, this variable is strongly correlated with the model residual evaluated at λ = 0;

the R2 of the regression after partialling-out the effect of xjt is over 0.35 (compared to 0.0006 in

Figure 1a).

The sign of the correlation between distance and σ−1
j (st;λ = 0) is also intuitive. The inverse

demand evaluated at λ = 0 is a (log) linear transformation of product market shares. Since

the data is generated by a model with non-IIA preferences, products located in denser areas of

the product space have relatively small market shares. The inverse demand evaluated at λ = 0

rationalizes this feature by assigning high unobserved quality to products that are relatively isolated,

7 The data-set for this example is generated as follows: xkjt ∼ N(0, 1) for k = 1, 2 and ξjt ∼ N(0, 1). The parameter
values are given by: β0 = −3, β1 = 1, β2 = 1, λ = 4.

8The x-axis was obtained by first regressing the excluded instrument on an intercept and the two continuous
characteristics.

9The instrument is constructed as follows: IVdist
jt =

√∑15
j′ 6=j

(
x
(2)

j′,t − x
(2)
jt

)2
.
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Figure 1: Scatter plot of residual product qualities under multinomial Logit preferences against
weak and strong instrumental variables

(a) Weak Instrument
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and low residual quality to products with many substitutes. This positive relationship between

differentiation (or distance) and the inverse demand at λ = 0 is captured by the strong instrument

used in Figure 1b, but not by the weak instrument in Figure 1a.

To formalize this intuition, we extend the previous example by adding multiple dimensions of

unobserved heterogeneity:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + λkηik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 15 and t = 1, . . . , 100. (13)

Using the previous notation, λ = {λ1, . . . , λK2} denotes the vector of K2 non-linear parameters.

For each specification, we use the sum of characteristics of rivals’ products as instruments (including

x
(1)
jt ), which leads to K2 + 1 IVs and one exclusion restriction (i.e. zjt = {1, x(1)

jt ,x
(2)
jt , IVjt}).10 As

before, the characteristics of products are generated assuming standard-normal distributions, and

the structural residuals have equal variances across products and markets.

The results of 1, 000 Monte-Carlo replications are summarized in Table 1. The first four rows

report the average bias and root-mean square error (RMSE) of the estimated log parameters.

Note that we estimate the log of σk in equation (13), instead of σk directly, to account for the

strictly positive support of the parameter space. The next four rows report the bias and RMSE

of the transformed estimated parameters. We use the results of the simulations to document three

important features associated with weak instruments: (i) failure to reject the full rank and IIA

hypothesis, (ii) imprecise estimates, (iii) optimization problems.

10The number of exclusion restrictions in this example corresponds to the number of “linear” characteristics:
|x(1)jt | = 1.
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Table 1: Monte-Carlo simulation results for exogenous characteristics model with weak instruments

K2 = 1 K2 = 2 K2 = 3 K2 = 4
bias rmse bias rmse bias rmse bias rmse

log λ1 -11.293 95.930 -5.433 74.954 -1.147 5.503 -8.400 229.670
log λ2 -4.692 58.306 -1.364 6.261 -1.096 6.173
log λ3 -1.407 9.199 -4.657 112.637
log λ4 -0.926 4.023

λ1 0.136 2.643 -0.010 2.486 -0.032 2.195 0.218 2.348
λ2 0.117 2.421 -0.006 2.267 0.099 2.297
λ3 0.178 2.377 0.113 2.378
λ4 0.075 2.207

1(Local-min) 0.189 0.514 0.594 0.661
Range(J-statistic) 0.737 1.149 1.636 1.513
Range(p-value) 0.167 0.189 0.212 0.210
Range(param) 11.735 6.641 6.583 4.863
Rank-test 1.265 0.464 0.259 0.178

p-value 0.615 0.813 0.886 0.919
IIA-test 1.327 1.296 1.486 1.944

p-value 0.426 0.422 0.356 0.237

Feature 1: Weak identification tests

We propose two tests to measure the weakness of the instruments.

The first one, Rank-test, is testing the null hypothesis that the matrix E
[
∂ρj (st,xt;θ) /∂θT · zjt

]
has rank m (i.e. local identification assumption). In non-linear IV models, testing the rank of this

matrix is not always feasible since the Jacobian matrix depends on the unknown parameter vector

θ (see Wright (2003) for a discussion). This is not an issue in our Monte-Carlo experiment, since

we can test the hypothesis at the true value of parameter. In this case, the rank-test proposed

by Cragg and Donald (1993) has the correct size asymptotically to test the null hypothesis of

under-identification. This test can easily be implemented using standard statistical softwares by

estimating the reduced-form of the model, defined in equation (??), evaluated at θ0 (e.g. ranktest

or ivreg2 in STATA). The results confirm that the sum of rival characteristics are very weak instru-

ments in our context. The null hypothesis of under-identification (i.e. rank less than m) cannot be

rejected with probability ranging between 60% and 92% on average across the specifications.

Our second approach is an ex-ante specification test aimed at evaluating the ability of the

instruments to reject alternative models (i.e. global identification). In line with the discussion of

Figure 1a it is feasible in the context of the mixed-logit model to test the validity of a particular

“wrong” model: the multinomial logit model.

Hausman and McFadden (1984) proposed a simple specification test of the IIA hypothesis with
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micro-data: estimate the model by including characteristics of rival products in the indirect utility

of consumers, and test the exclusion restriction implied by the multinomial logit model. This

insight can be used in our context by testing the validity of the exclusion restrictions at Σ = 0.

For instance, in our exogenous characteristic example, this amounts to test the restriction that the

instrument vector, which measures the characteristics of rival products, should be excluded from

the average utility of product j (relative to 0). Since the inverse-demand under the null is linear,

this hypothesis can be tested as follows:

ρj (st,xt;β,λ = 0) = ln sjt/s0t = xjtβ + zjtγ + ξjt. (14)

If Assumption 1 is valid, the IIA property corresponds to the null hypothesis that γ̂ = 0. This

test can be constructed using standard linear regressions techniques (i.e. avoiding any non-linear

optimization).11

If the true model is such that λ0 6= 0, failing to reject the IIA hypothesis is a sign that the

moment conditions are weak. Obviously, λ = 0 is only one particular potentially “wrong” model.

However since it is a computationally simple test to conduct, failure to reject the Logit model is a

strong signal that alternative instruments should be considered, and/or that the Logit model might

be the best model to use given the data.12

The last two lines of Table 1 report the average F-statistics and p-values associated with the null-

hypothesis of IIA preferences (i.e. γ̂ = 0). As with the Cragg-Donald statistics, we cannot reject

the null hypothesis that the model is weakly identified. In particular, across all four specifications,

the instruments cannot reject IIA hypothesis using standard confidence levels.

Feature 2: Bias and precision of the estimates

The second striking feature of the simulation results are the large negative biases and important

dispersion in the estimates of the log parameters. This poor performance is largely explained by the

presence of large negative outliers causing the estimated standard-deviation to be approximately

zero (i.e. σ̂k ≈ 0). Figure 2 plots the distribution of σ̂1 in the K2 = 1 specification. In this

specification, 8.4% of σ̂1 are estimated to be less than 0.001, which can be interpreted as a corner

solution to the GMM optimization problem. This is a robust feature of weak instruments that

has been documented by other researchers analyzing the BLP model (e.g. Reynaert and Verboven

(2013)).

It is caused by a combination of two factors. First, weak instruments imply that the normal

11When xjt includes endogenous variables (e.g. prices), the same IIA hypothesis can be tested by testing the
validity of the over-identification restrictions, or by using separate price instruments. See discussion below.

12Obviously, the IIA hypothesis can be rejected because the instruments are not valid, and not because the in-
struments are strong. If that is the case, the over-identifying restrictions should also be rejected with the non-linear
model. It is therefore important that researchers report both tests (i.e. IIA-test and over-identifying restriction test)
when presenting their results.
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Figure 2: Distribution of the random-coefficient parameter estimate with weak instruments
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distribution is a poor approximation of the finite-sample distribution of the parameter estimates.

This can clearly be seen in Figure 2; we can easily reject the null hypothesis of normality using

Shapiro-Wilk test statistic. In practice, this means that the distribution of the parameter estimates

produce frequent outliers. Second, since the parameter space is bounded, outliers on the left-side

of the distribution lead to corner solutions. This has important implications for applied work. Not

only does it complicate inference, but it also lead to frequent rejection of models with heterogenous

taste for product attributes.

The second panel in Table 1 shows the dispersion of parameter estimates is still large after

transforming the parameter estimates. The RMSEs range from 2.2 to 2.6 across specifications;

or more than 50% of the true parameter value (i.e. σk = 4 for all k’s). The precision of the

estimates is poor across all four specifications, and does not deteriorate when we increase the

number dimensions of heterogeneity. Notice also that the sample sizes are fairly large relative to

the number of parameters to estimate (i.e. 1, 500 versus K2 ≤ 4). Therefore, as with linear IV

models, the results confirm that weak instruments lead to highly imprecise estimates.

Feature 3: Numerical optimization problems

Another consequence of weak instruments in non-linear IV problems is the presence of local minima

and numerical optimization problems. To illustrate this point, for each simulated sample, we launch

the optimization routine at 10 random starting values (centered around the true), and use a Nelder-
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Mead (or Simplex) algorithm to find the local minimum. The indicator variable 1(Local-min) is

equal to one if the algorithm converged to more than one solution.13 This procedure clearly shows

that multiple local minima is a frequent phenomenon in our simulations with weak instruments.

Moreover, the frequency of the problem is increasing with the dimensionality of the parameter

space. When K2 = 4, 66% of the samples exhibit multiple minima out of 10 starting values,

compared to 19% when K2 = 2.

The next two rows illustrate the magnitude of the differences between the different local solu-

tions. For the samples exhibiting multiple solutions, Range(J-stat) and Range(p-value) calculate

the average difference between of largest and smallest J-statistics and p-values respectively, while

Range(param) calculates the average absolute difference between the parameter estimates. The

average differences in the J-statistic p-values imply that the over-identifying restrictions are re-

jected with a p-value of roughly 20% on average using the largest local minimum, compared to 40%

with the global minimum solution. These differences are consistent with the numerical problems

documented in the empirical literature by Metaxoglou and Knittel (2014).

2 Efficient estimation and the choice of instruments

How should the instruments be formed from the data? In the case of the linear parameters β the

choice is natural - the vector xjt of own product characteristics are the optimal instrument for β.

However, for the case of the non-linear parameters λ the choice is far less obvious, and can have

important consequence of the performance of the estimator as we saw above.

Ai and Chen (2003) showed that it is possible to construct (asymptotically) optimal instruments

directly from the data without prior knowledge of the model parameters.14 More specifically, an

efficient instrument, Aj(xt), is defined as a vector of L dimension basis-functions such that as

L → ∞ and L/n → 0, it is possible to approximate arbitrarily well the conditional moment

restriction via a nonparametric sieve regression:

0 = E [ρj (st,xt;θ) |xt]

= E
[
σ−1
j (st,xt;λ) |xt

]
− xjtβ

≈ Aj(xt)π̂ − xjtβ (15)

where π̂ is the least-square coefficient vector obtained by regressing the inverse-demand on the

vector of basis function Aj(xt). Note that Aj(xt) includes xjt.

13Formally, two parameter vectors are defined to be different if the smallest absolute difference is largest than 0.001.
Parameter estimates obtained after failed convergence attempts are excluded from this exercise.

14Newey (1993) defines an instrument to be efficient if it achieves the semiparametric efficiency bound defined by
Chamberlain (1987). The “optimal instruments” defined Chamberlain (1987) cannot be constructed directly from
the data when the model in non-linear. See Newey (1990) for a two-step non-parametric procedure to estimate the
optimal instruments.
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Equation (15) can be thought of as an ideal “first-stage” regression and clarifies the role of the

instruments in identifying the random-coefficient parameters λ: A relevant instrument vector is set

of variables characterizing the menu of characteristics available to consumers that can predict the

inverse demand function of each product.

However, in our context, summarizing the information contained in (j,xt) is a daunting task.

Recall that the number of exogenous variables xt is equal to K × Jt, and the endogenous variables

in the structural equation is equal to Jt. In many applications the number of products is at least as

large as the number of markets/periods. This creates a curse of dimensionality problem limiting our

ability to use this approach to describe the form of the optimal instruments; at least without making

further restrictions on the shape of the reduced-form function that needs to be approximated.

Formally, a curse of dimensionality exists because the reduced-form of the model is a product-

specific function of the entire menu of product characteristics available in the market. As the

number of products in each market increases, both the number of arguments and the number of

functions to approximate increase.15 Therefore, unless the number of products is assumed to be

constant and small relative to the number of markets, the number of terms necessary to approximate

the function grows exponentially.16 Intuitively, changes in market structure, from xt to xt′ , affect

each products differentially due to market segmentation, which implies that the expectation of the

inverse-demand needs to be approximated separately for each product.

To solve this curse of dimensionality, we use theoretical properties of the linear random-

coefficient model to impose more structure on the reduced-form of the model. In particular, we

show that the symmetry of the demand system implies that the reduced-form of the model can

be written as symmetric function of the distribution of characteristic differences; a property which

breaks the curse of dimensionality. We then show how this property can be used to guide the choice

of the basis functions, and therefore the choice of instruments.

2.1 Symmetry of the structural and reduced-form functions

Let us define djt,k = xjt − xkt to be the vector of characteristic differences between product

j and product k in market t, and let djt = (djt,0, . . . ,djt,j−1,djt,j+1, . . . ,djt,J) be the matrix

of differences relative to product j. Similarly, d
(2)
jt is a matrix of non-linear characteristic dif-

ferences. Let us define an ordered pair ωjt,k =
(
skt,d

(2)
jt,k

)
associated with each product k =

0, . . . , nt in the market (including the outside good) for a given inside product j > 0, and let

15For example in the case of the original automobile data, the number of models is roughly 100 per year with
5 product characteristics. This makes xt a 500 dimensional object. Estimating a non-parametric function of 500
variables would require an inordinate number of markets - in the BLP context there are only 20 markets (corresponding
to 20 different years) and thus not even as many observations as variables.

16The presence of a curse of dimensionality violates Assumption 3.2 in Ai and Chen (2003), since the number of
arguments in the approximating functions grow at the same rate as the sample size. However it does not affect
the identification result in Berry and Haile (2014), since they implicitly assume an environment with finitely many
products.
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ωjt = (ωjt,0, . . . ,ωjt,j−1,ωjt,j+1, . . . ,ωjt,J). We now have the following results which are proven in

the Appendix A.

Proposition 1. Under the linear in characteristics random utility model the inverse-demand

σ−1
j

(
st,x

(2)
t ;λ

)
= f (ωjt;λ) + Ct, j = 1, . . . , nt (16)

where Ct is a market-specific constant and f is a symmetric function of ωjt.

The proof can be sketched as follows. We first recognize that the identity of products or

the level of product attributes is irrelevant to predict consumers’ discrete choice. Therefore, we

can abstract from the identity of products by expressing the same demand function in terms of

characteristics differences relative to product j. Furthermore, rather than normalizing the quality

index of the outside good to zero, we rescale the quality index to be between zero and one: τjt =

exp(δjt)/
(

1 +
∑

j′t exp(δj′t

)
for all j = 0, . . . , Jt. This new normalization has the advantage of

treating the outside option symmetrically with respect to the other options, and explains the

presence of a market-specific intercept in equation (16). These two normalizations imply that the

demand function for product j is a fully exchangeable function of the structure of the market relative

to product j: mjt =
{

(d
(2)
jt,0, τ0t), . . . , (d

(2)
jt,j−1, τj−1,t), (d

(2)
jt,j+1, τj+1,t), . . . , (d

(2)
jt,nt

, τnt,t)
}

. The inverse

mapping associated with this demand representation maintains the same symmetry and anonymity

properties.

There are two key implications of Proposition 1. The first is that the inverse-demand function

σ−1
j

(
st,x

(2)
t ; Σ

)
can be expressed in a fashion where it is no longer product j specific, once we

condition on a vector of state variables ωjt of the products competing with j in a market.17 The

second key implication is that product invariant f is a symmetric function of the states of the

competing products. Both of these features allow us to re-write the reduced-form equation as a

symmetric function of market-structure.

To obtain this result, we need to make one more assumption.

Assumption 2. The joint distribution of the unobserved quality of products is exchangeable in the

identity of products:

Pr(ξj,t < c|ξ1,t, . . . , ξj−1,t, ξj,t, . . . , ξnt,t) = Pr(ξj,t < c|ξρ(−j),t)

for any ordering function ρ().

In economics terms, this assumption implies that the identity of rival products is not important

to predict the distribution of unobservable attributes. This does not necessarily rule out the possi-

bility that brands, for instance, are relevant for consumers’ decisions. As long as brand or product

17Observe that the state ,ωjt,k of a rival k 6= j does not contain its own product characteristic ,xkt but rather the
difference, xkt − xjt, relative to j.
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fixed-effects enter the model linearly (shift the mean attribute), they can be concentrated out of

the residual quality. This assumption is not novel in the literature. It is implicit in much of the

prior empirical work, and is discussed explicitly in Berry et al. (1995) (section 5.1).

The following proposition constitutes our main theoretical result, and state that the reduced-

form of the model can be written as symmetric functions of the vector of characteristic differences.

Proposition 2. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the conditional expectation of

the inverse-demand is a symmetric function of the matrix of characteristic differences:

E
[
σ−1
j

(
st,x

(2)
t |λ0

) ∣∣xt] = g (djt) + ct

where ct is a market specific constant.

The proof can be sketched as follows. First, Proposition 1 implies that we can write the

inverse-demand as a symmetric function by re-defining the state of the industry relative to product

j. Recall that the expectation operator in equation 10 is over the market-shares vector (i.e. demand

function). Since the demand for each product is symmetric, the density of shares can be re-written

as a function of the entire vector of characteristics differences and the joint density of unobservable

quality ξjt. This involves re-ordering the vector of characteristic differences to predict the marginal

distribution of each product’s market share, and does not require knowing the identity of each

individual products (under Assumption 2). This establishes that the expectation of the inverse-

demand is a symmetric function of the matrix djt, because the joint distribution of market shares

and the integrand itself are symmetric functions of characteristic differences.

Finally, a direct corollary of proposition 2 is that the optimal instruments (Chamberlain (1987),

Newey (1990)) exhibit the same symmetry properties.

Corollary 1. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the conditional expectation of the

derivative of the residual function is a symmetric function of the matrix of characteristic differences:

E

[
∂ρjt (st,xt|θ)

∂λk

∣∣∣∣∣xt
]

= gk (djt) + ct,k, ∀k = 1, . . . , dim(λ)

where ct,k is a market/parameter specific constant.

To understand the usefulness Proposition 2 (and Corollary 1), consider a special case of the

model with a single attribute, xjt. In this case the state space is given by a Jt × 1 vector with

element k given by: djt,k = xkt−xjt. The first order polynomial approximation of the reduced-form
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can written as follows:

g(djt) ≈
∑
j′ 6=j

γj′djt,j′

= γ1 ·

∑
j′ 6=j

djt,j′

 (17)

The second line follows directly from the symmetry of the reduced-form function. Since we can

re-order the products without changing the inverse-demand (i.e. g(djt,−j) = g(djt,ρ(−j))), the

coefficients of the polynomial function must be equal across products. The second order polynomial

approximation takes a similar form:

g(djt) ≈
∑
j′ 6=j

∑
k 6=j

γj′,kdjt,kdjt,j′

= γ1 ·

∑
j′ 6=j

djt,j′

+ γ2 ·

∑
j′ 6=j

(
djt,j′

)2+ γ3 ·

∑
j′ 6=j

djt,j′

2

(18)

The main implication of Proposition 2 is therefore that one can approximate the reduced-form of

the model using a small number of basis functions for which the number does not grow with the

number of products available in the market, thereby breaking the curse of dimensionality.

In summary, Proposition 1 solves the curse of dimensionality in two ways. First, by expressing

the state of the industry in differences (rather than in levels), it is not longer necessary to condition

on the identify of products to express the inverse-demand function. This allows us too “pool”

observations within and across markets since the same inverse-demand equation is used to explain

the data on all products (j, t). Second, under Assumption 2, the expectation of the inverse demand

is an exchangeable function of the vector of characteristics difference. This implies that the inverse-

demand is function of the magnitude of characteristics, not the identity of competing products.

As the previous example illustrates, this leads to a substantial reduction in the number of basis

functions necessary to approximate the reduced-form.

Note finally that Proposition 1 is related to the partial-exchangeability result obtained in Pakes

(1994). In particular, Pakes argues that in markets with differentiated products, a firm’s demand

and profit functions are partially exchangeable in its own and rivals’ vector of characteristics:

σj(xjt, x−j,t) = σj(xjt, xρ(−j),t) for any ordering ρ(). While this result certainly alleviates the curse

of dimensionality discussed above, it is silent in terms how xjt and x−j,t should be interacted when

constructing the basis function. In contrast, by expressing the market structure as a matrix of

differences, we obtain a fully exchangeable function. This property is commonly used to alleviate

the curse of dimensionality associated with the computation of Markov Perfect Equilibrium (see

Doraszelski and Pakes (2007) for a survey of this literature). Farias et al. (2012) discusses various
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moment-based approximation functions that exploit this property.

Implication 1: Non-Parametric Estimation

Implication 2: Differentiation IVs

Going back to the instrument selection discussion, recall that an efficient choice of instruments is

a set of basis functions (e.g. polynomial of order L) that can approximate the reduced-form as

L gets large. This is analogous to the suggestion of Berry et al. (1995) to use basis functions

directly as instruments, rather than computing the conditional expectation of the Jacobian of the

residual function as in Newey (1990). Note that Corollary 1 makes it clear that two approaches are

closely related. Since the optimal instruments are symmetric functions of the same state variables,

the same basis functions used as instruments in a first-stage can be used in a second-stage to

approximate the optimal instruments in order improve the efficiency of the estimator.18

To see how Proposition 2 can be used to guide the selection of the instruments, consider the

single dimension example above with a second-order polynomial approximation basis. The sym-

metry property restricts the number of instruments to at most three: the sum of characteristics

differences, the sum of square of characteristic differences, and the square of the sum. Of course,

depending of the nature of the data, it is not clear that all three should be used to construct moment

restrictions, and so there is still a role for empirically choosing the optimal number of moments.

More generally, an efficient set of instruments for Σ correspond to a finite number of moments

that characterize the empirical distribution of characteristic differences relative to product j in

market t. Since these functions measure the degree of differentiation we label those instruments

Differentiation IVs. To fix ideas, we consider two examples that we will use in the numerical

examples in the Monte-Carlo simulations Section below. We next discuss a series of extensions and

special cases in Section 2.2.

Two examples

A direct interpretation of Proposition 2 is that we can construct instrumental variables using the

leading terms of the basis function of a second-order symmetric polynomial (focussing only on the

binary interaction terms):

Aj(xt) =

∑
j′ 6=j

d1
jt,j′ × dljt,j′ , . . . ,

∑
j′ 6=j

dKjt,j′ × dljt,j′


l=1,...,K

(19)

18A related a approach, proposed by Berry et al. (1999), is to evaluate the Jacobian of the model residual at
the unconditional mean of residual (i.e. ξjt = 0), using preliminary estimates of the parameters (see also Goeree
(2008)). Reynaert and Verboven (2013) show that this heuristic method tends to work well in practice, by creating
the “right” kind of cross-sectional variation in the instruments. Our approach is complimentary to this methodology,
as we discuss in more details in Section 3.5 below.
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where dkjt,j′ = xj′t,k − xjt,k measures the difference between product j and j′ along dimension k.

If the number of characteristics K = 3, this formulation includes 9 instrumental variables. These

functions have strong economic interpretations. The sum of square of characteristic differences can

be interpreted as continuous measures of distance between products, while the interaction terms

capture the covariance between the various dimensions of differentiation. The Euclidian distance

instrument used in Figure 1b is the square-root of the former set of instrumental variables.

Alternatively, one can exploit the symmetry property by considering only the characteristics

of “close” rivals when summarizing the market structure facing each product. In most models

of product differentiation (e.g. quality-ladder, hotellling, nested-logit etc), the demand for each

product is most heavily influenced by a small number of alternatives with similar characteristics.

For instance in a “mixed-logit quality-ladder” model, as the variance of the logit shock goes to zero,

the inverse demand of product j is only function of the characteristics of products located to the

right and left in the quality ranking. This feature suggests the following instrument vector:

Aj(xt) =

∑
j′ 6=j

1
(
|d1
jt,j′ | < κ1

)
djt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKjt,j′ | < κK

)
djt,j′

 , (20)

where κk is a proximity threshold (e.g. standard-deviation of xjt,k across all markets), and djt,j′

is a K × 1 vector of characteristic differences between product j and j′. When characteristics are

discrete, the indicator variables can be replaced by 1(dkjt,j′ = 0).

The two formulations of the Differentiation IVs in equations (19) and (28) can include a large

number of terms depending on the number of characteristics. In general, it is advisable to select

a subset of those variables, based on the amount of variation across products and/or markets.

For instance, it is common for some product characteristics to exhibit very little variation across

markets. In Nevo (2001), the non-linear characteristics vary only at the product level (i.e. x
(2)
jt =

x
(2)
j j = 1, . . . , 25), while prices vary both at the product and the market level. Assuming for

simplicity that prices are exogenous (or that the researchers have valid cost shifter), one construct

instruments that will be relevant to identify Σ:

Aj(xt) =


∑
j′ 6=j

1
(
|d1
j,j′ | < κ1

)
dpjt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKj,j′ | < κK

)
dpjt,j′︸ ︷︷ ︸

Price shocks × Characteristic differentiation

,
∑
j′ 6=j

(
dpjt,j′

)2

︸ ︷︷ ︸
Price differentiation


. (21)

According to this formulation, the magnitude of the heterogeneity associated with market-invariant

characteristic k is identified from (exogenous) variation in the relative prices of products that are

more or less differentiated from product j along that particular dimension.

How does this differ from the existing literature? Interestingly, the basis function for the first-
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order polynomial formulation corresponds to the suggestion in Berry et al. (1995) of using the sum

of product characteristics as instruments. However, the first-order basis is collinear with market

fixed-effects and the products’ own characteristics. It therefore contains relatively little information

to predict the inverse demand function. As we illustrated in the simulation example above, this leads

to a weak identification problem of the random-coefficient parameters. In contrast, the higher-order

functions discussed above vary both within and across markets, since they summarize the position

of each product relative to others available in the market. Therefore, the proposed instruments can

be thought of as measures of product differentiation along the exogenous dimensions of the model.

Of course the logic of differentiation IVs has been used in some applications. However, the

relevance of exogenous measures of differentiation is most often justified by their ability of predict

prices, rather than to identify the non-linear parameters. There exists two important exceptions:

the nested-logit model (e.g. Berry (1994), Bresnahan et al. (1997)), and models of spatial differ-

entiation (e.g. Pinkse et al. (2002), Davis (2006), Thomadsen (2007), and Houde (2012)). In both

literatures, the standard instruments correspond to different versions of the proximity measures

described in equation 28. From this perspective, the main contribution of this section is to for-

mally show that the intuition developed in these two literatures remains valid in the more general

random-coefficient model.

2.2 Extensions: Demographics and Price Endogeneity

Demographic variation A restrictive assumption imbedded in the derivation of the demand

function in equation (4) is that the distribution of consumer preferences is common across markets.

When the density function φt(·|λ) is indexed by t, for instance due to variation in demographic

characteristics, the reduced-form function becomes a market-specific function of the distribution

of characteristic differences. There are two ways of accounting for this. First, one could specify

separate moment conditions for each market. When this is not feasible, demographic characteristics

can be added to the instrument vector to account for differences across markets. While previous

papers have used this type of instruments, they are typically motivated as “markup” shifters (see

for instance Gentzkow and Shapiro (2010) and Fan (2013)). We show that under fairly general

conditions, it is feasible to transform the model so that Differentiation IVs analogous to the one

defined above can be used to identify the non-linear preference parameters in the presence of

demographic variation across markets.

To see this, consider the following single dimension example:

uijt = δjt + bitx
(2)
jt + εijt (22)

where bit = π1yit + νi is the idiosyncratic component of the marginal utility of characteristic x
(2)
jt

(see Nevo (2001)). This random coefficient is composed of a demographic component yit that
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is distributed according to (known) CDF Dt(y), and a residual component νi that is normally

distributed with mean zero and variance σ2
1. The vector of non-linear parameters in this example

contains two elements: λ = {π1, σ1}.
Assume that the distribution of demographic characteristics can be approximated arbitrarily

well using the following affine transformation of a random variable ei:

yit = ȳt + sdtei such that Pr(ei < x) = D̃(x).

where {ȳt, sdt}t=1,...,T and D̃(x) are known transformation of the observed distribution Dt(y). Of

course this transformation is exact if yit is normally distributed. It simply corresponds to the

standardized distribution of demographic characteristics across markets.

If this assumption holds, we can write the demand function as follows:

σjt(δt,x
(2)
t ; Σ) =

∫ ∫ exp
(
δjt + π1yitx

(2)
jt + σ1ηix

(2)
jt

)
1 +

∑Jt
j′=1 exp

(
δj′t + π1yitx

(2)
j′t + σ1ηix

(2)
j′t

)φ(dηi)dDt(yit; mt, sdt)

=

∫ exp
(
δjt +

∑K2
k=1 vikx̃

(2)
jt,k

)
1 +

∑Jt
j′=1 exp

(
δj′t +

∑K2
k=1 vikx̃

(2)
jt,k

)ψ(vi)dvi

= σj(δt, x̃
(2)
t ; Σ). (23)

where x̃
(2)
jt =

{
ȳtx

(2)
jt , sdtx

(2)
jt , x

(2)
jt

}
is an expanded vector of non-linear characteristics, vi =

{1, ei, ηi}, and is the joint density of vi defined from φ(·) and D̃(·). Note that the change of

variables in equation (23) allows us to eliminate the t subscript from the demand function, and

expand the state space by adding two new interactions: (i) the mean of yit times x
(2)
jt , and (ii)

the standard-deviation of yit times x
(2)
jt . Under this new parametrization of the model, we can use

directly Proposition 2 to write the reduced-form of the model as follows:

E
[
σ−1
jt (st,xt; Σ)|xt

]
= g

(
djt,mt ⊗ d(2)

jt

)
+ ct (24)

where mt = {ȳt, sdt} is a 1× 2 vector containing the mean and standard-deviation of yit in market

t, and mt ⊗ d(2)
jt is the interaction of those moments with the non-linear characteristic differences.

Therefore, when demographic variation is incorporated in the model in this fashion, the reduced-

form of the model is a symmetric function of the same arguments as before, plus moments of

the distribution of demographic characteristics interacted with the distribution of characteristics

differences.

We can use this insight to construct instrument variables that identify separately the two sources

of heterogeneity in the taste for characteristic x
(2)
jt . For instance, the first Differentiation IV example

23



above can be expanded by adding an interaction with demographic moments:

Aj(xt) =

∑
j′ 6=j

d1
jt,j′ × dljt,j′ , . . . ,

∑
j′ 6=j

dKjt,j′ × dljt,j′ ,
∑
j′ 6=j

mt ⊗
(
dljt,j′ × d

(2)
jt,j′

)
l=1,...,K

. (25)

Focussing on the quadratic term (i.e. dljt,j′ = d
(2)
jt,j′), the added instruments capture how product

differentiation asymmetrically impacts the inverse-demand of product j based on the mean and

variance of consumer characteristics across markets.

The argument above holds exactly if the distribution of demographic characteristics can be

standardized, and the logic can be extended to multiple dimensions. More general distributions,

we need to rely on a heuristic approximation, but the logic should hold more generally:

E
[
σ−1
jt (st,xt; Σ)|xt

]
≈ g

(
djt,mt ⊗ d(2)

jt

)
+ ct (26)

where mt is now a vector of moments characterizing the joint distribution of demographic char-

acteristics in market t. The key insight of this transformation is that demographic characteristics

should enter the instrument vector as interaction terms with other measures differentiation, rather

than as stand-alone variables.19

Endogeneous prices Incorporating endogenous prices into the model does not fundamentally

change the identification problem of Σ, but adds an additional simultaneity problem: in equilibrium

prices are correlated with the unobserved quality of products (Berry et al. 1995).

To see how this a new source of simultaneity changes the problem, consider the following slight

change of notation to the inverse-demand:

σ−1
j

(
st,x

(2)
t ,pt|λ0

)
= f (ωjt) + Ct.

Element k of the state vector ωjt now includes: {skt,d
(2)
jt,k,d

p
jt,k}, where dpjt,k is the price differences

between product j and k. As before, f(·) is a symmetric function of industry state vector ωjt.

Although the conditional expectation of equation 27 is also a symmetric function, the conditional

mean restriction in equation 10 is no longer satisfied:

E
[
σ−1
j

(
st,x

(2)
t ,pt;λ

0
) ∣∣xt,pt]− xjtβ = g(djt,d

p
jt) + ct − xjtβ 6= 0.

Two sources of variation have been exploited in the literature to construct valid price instru-

ments: (i) ownership structure (e.g. Berry et al. (1995)), and (ii) cost-shifters (e.g. Nevo (2001)).

19See Romeo (2010) for a similar argument and simulation results showing the importance of accounting for
interactions between product characteristics and the mean of demographic attributes in the instrument vector.
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Let wjt denotes a vector of relevant and valid price instruments such that:

E[ξjt|xt,wt] = 0. (27)

The challenge in using this restriction to construct instruments, is that the reduced-form of the

model cannot be written as a symmetric function of {djt,dwjt}. To see this, recall that the symmetry

of the reduced-form arises from the symmetry of the demand function itself (since the conditional

expectation is over st). With endogenous prices, the conditional expectation of the inverse demand

depend also on the distribution of prices given (xt,wt) (i.e. firms’ conduct). This distribution

is unlikely to be a symmetric function of characteristic differences, since the identity/ownership

of products is expected to play an important role. It is therefore impossible to obtain an exact

characterization of the reduced-form without knowing the exact supply relation governing prices.

Importantly, this does not imply that it is not feasible to construct valid/relevant instruments in

this case. It just means that we cannot provide a exact characterization of the reduced-form of the

model that solves the curse of dimensionality problem for all supply models.

To get around this problem, we rely on a heuristic approximation of the reduced-formed first

proposed by Berry et al. (1999), and recently reexamined by Reynaert and Verboven (2013). The

argument proceed in two steps.

First, let p̂jt ≈ E(pjt|xt,wt) denotes an estimate of the reduced-form of the pricing equation

constructed from observed characteristics. This exogenous price measure can be constructed using

linear regressions by exploiting random variation from cost or ownsfership shocks (as in Reynaert

and Verboven (2013)), or by solving an equilibrium pricing game after setting ξjt = 0 (as in Berry

et al. (1999)). The choice of the approach is application/data specific. Since p̂jt is constructed

from (xjt,wjt), the following conditional moment restriction is satisfied:

E [ξjt|xt, p̂t] = 0.

Second, following insights from Berry et al. (1999), we use the following heuristic approximation

of the reduced-form:

Ep,s

[
σ−1
j

(
st,x

(2)
t ,pt;λ

0
) ∣∣xt,wt

]
≈ Es

[
σ−1
j

(
st,x

(2)
t , p̂t;λ

0
) ∣∣xt, p̂t]

= g
(
djt,d

p̂
jt

)
+ ct

The heuristic approximation distributes the expectation operator over prices inside the non-linear

function σ−1
j (·). The second equality follows from the fact that after replacing pjt with p̂jt in the

inverse-demand, we obtain a reduced-form representation that is a symmetric function of dp̂jt.

Berry et al. (1999) use the same heuristic to approximate the optimal instruments. The

difference between our two approaches, is that we use this approximation to approximate the
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conditional expectation over prices, while Berry et al. (1999) use it to approximate the conditional

expectation over prices and shares. Reynaert and Verboven (2013) show that this heuristic approach

works well in practice for models with a small to medium number of random coefficients. See Section

3.5 below for a comparative analysis of the two approaches.

As before, we can then construct instrument functions that exploit the symmetry of g(djt,d
p̂
jt).

For instance, the “local” differentiation IVs example above becomes:

Aj(xt,wt) =

p̂jt,∑
j′ 6=j

1
(
|d1
jt,j′ | < κ1

)
djt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKjt,j′ | < κK

)
djt,j′ , 1

(
|dp̂jt,j′ | < κp̂

)
djt,j′

 ,(28)

where the vector characteristic differences djt,j′ is expanded to included (exogenous) price differ-

ences dp̂jt,j′ . Note that p̂jt is included in Aj(xt,wt) to instrument for pjt.

3 Monte-Carlo Simulations

In this section, we analyze the finite sample properties of the Differentiation IVs described in the

previous section. We consider four models: (i) exogenous characteristics with independent random-

coefficients, (ii) exogenous characteristics with correlated random-coefficients, and (iii) endogenous

prices, and (iv) endogenous product locations. We illustrate how to construct relevant instruments

for each of these cases. In the last subsection, we compare our IV approach to the optimal IV

approximation proposed by Berry et al. (1999) and Reynaert and Verboven (2013).

3.1 Independent random-coefficients

We start by revisiting the numerical example discussed in Section 1.3:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + λkηik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 15 and t = 1, . . . , 100

where ηik ∼ N(0, 1) and εijt ∼ T1EV(0, 1). See footnote 7 for a description of the data-generating

process. We simulate models with number of random of random coefficients ranging from 1 to 7

(i.e. K2). For each specification, we compare the performance two differentiation IVs:

Quadratic Diff IV: zjt =

xjt,∑
j′

(
d1
jt,j′
)2
, . . . ,

∑
j′

(
dKjt,j′

)2
Local Diff IV: zjt =

xjt,∑
j′

1
(
|d1
jt,j′ | < sd1

)
, . . . ,

∑
j′

1
(
|d1
jt,j′ | < sdK

)
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Table 2: Monte-Carlo simulation results for exogenous characteristics model with strong instru-
ments

(a) Differentiation IV: Quadratic

bias rmse bias rmse bias rmse bias rmse

log λ1 0.000 0.030 -0.000 0.032 -0.001 0.033 -0.001 0.036
log λ2 -0.002 0.031 0.000 0.032 -0.002 0.035
log λ3 -0.000 0.031 -0.001 0.034
log λ4 -0.002 0.036

λ1 0.002 0.122 0.001 0.130 -0.003 0.133 -0.003 0.142
λ2 -0.004 0.125 0.004 0.128 -0.004 0.141
λ3 0.001 0.125 -0.001 0.137
λ4 -0.005 0.146

1(Local) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1202.104 564.033 330.399 206.417

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 359.409 363.224 321.730 276.135

p-value 0.000 0.000 0.000 0.000

(b) Differentiation IV: Local

bias rmse bias rmse bias rmse bias rmse

log λ1 -0.000 0.032 -0.001 0.034 -0.000 0.034 -0.001 0.037
log λ2 -0.002 0.032 0.000 0.033 -0.001 0.037
log λ3 -0.001 0.033 -0.001 0.037
log λ4 -0.003 0.038

λ1 0.002 0.126 0.000 0.135 0.002 0.137 -0.003 0.147
λ2 -0.007 0.128 0.004 0.131 -0.003 0.148
λ3 -0.002 0.130 -0.001 0.148
λ4 -0.008 0.152

1(Local-min) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1050.015 523.760 322.288 204.402

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 297.544 298.073 262.636 222.932

p-value 0.000 0.000 0.000 0.000

where K is the number of characteristics (excluding the intercept), and sdk is the standard-deviation

of xjt,k. Tables 3 and 2b summarize the simulation results.

Table 3 mirrors the results obtained in Table 1 with weak instruments (i.e. sum of rival char-

acteristics). Both differentiation IVs specifications allow us to reject the null hypothesis of under-
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Table 3: Small sample and asymptotic distribution for exogenous characteristic model with strong
instruments

Diff IV: Quadratic Diff IV: Local
bias rmse asym-se bias rmse asym-se

K2 = 1 0.000 0.030 0.031 -0.000 0.032 0.032
K2 = 2 -0.001 0.032 0.031 -0.001 0.033 0.032
K2 = 3 -0.000 0.032 0.033 -0.000 0.033 0.034
K2 = 4 -0.001 0.035 0.035 -0.002 0.037 0.036
K2 = 5 0.000 0.039 0.039 -0.000 0.040 0.040
K2 = 6 -0.001 0.045 0.044 -0.001 0.046 0.045
K2 = 7 0.002 0.048 0.050 -0.003 0.051 0.052

identification (rank-test), as well as the IIA hypothesis. In addition, the frequency of local optima

is equal to zero across all specifications; meaning that the numerical optimization algorithm always

converged to the estimates irrespectively of the starting values.

The precision and bias of the parameter estimates are also small across all specifications. The

RMSE for σ̂x are roughly 17 times larger with the strong instruments Table 3, compared with the

weak instruments used in Table 1.

Table 2b summarizes the precision of the estimates across all specifications, including the average

asymptotic standard-errors. Consistent the discussion above, we see that loss in precision from

adding random-coefficients is very minor. The RMSE increases from 0.03 to 0.05 when we increase

the number of random-coefficients to seven. This is encouraging since the sample size is fairly small:

15 products × 100 markets. In addition, the asymptotic standard-errors are nearly identical to the

RMSE across all specifications, consistent with the idea that the two alternative Differentiation IVs

are strong in this context.

Finally, note that at least in this example, the quadratic instruments appear to perform

marginally better than the local differentiation IVs. This is reflected in slightly smaller RMSE

and biases, and largest Rank-test and IIA-test statistics.

3.2 Correlated random-coefficients

Next, we consider a model with exogenous characteristics in which consumers have correlated

random-coefficients:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + νik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 50 and t = 1, . . . , 100, (29)

where νi ∼ N (0,Σ), and K2 = 4. We use a larger sample for this example: Jt = 50 instead

Jt = 15. This reflects the fact that the number of non-linear parameters is substantially larger with

correlated random-coefficients: from 4 to 10. The sample size is still relatively small compared to
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Table 4: Variance-Covariance matrix of random-coefficients

(a) Variance-Covariance Matrix (Σ)

Σ·,1 Σ·,2 Σ·,3 Σ·,4
Σ1,· 4
Σ2,· -2 4
Σ3,· 2 -2 4
Σ4,· 2 -2 2 4

(b) Choleski Decomposition

C·,1 C·,2 C·,3 C·,4
C1,· 1.99 0 0 0
C2,· -1 1.73 0 0
C3,· 1 -0.58 1.63 0
C4,· 1 -0.58 0.48 1.58

what applied researchers typically used.

Table 4 reproduces the variance-covariance used in the simulations. The variance terms are

the same as the ones in the previous specification. The covariance terms are chosen such that the

correlation between random-coefficients are either −0.5 or 0.5.

Note that we do not estimate Σ directly, but the Choleski decomposition of Σ = C ′C. This

allows us to write indirect utility of consumers as a linear function of parameters and K2 standard-

normal random-variables: νi = C ′ηi where ηi ∼ N (0, I). To ensure that Σ is positive semidefinite,

we constraint the diagonal elements of C to be positive by estimating the log of Ck,k.

To construct an instrument vector, we use the quadratic form of the Differentiation IVs with

additional interaction terms between each characteristics pairs:20

zjt =

xjt,∑
j′ 6=j

d1
jt,j′ × d1

jt,j′ , . . . ,
∑
j′ 6=j

dljt,j′ × dljt,j′ ,
∑
j′ 6=j

d1
jt,j′ × dl+1

jt,j′ , . . . ,
∑
j′ 6=j

dKjt,j′ × dKjt,j′

 . (30)

This results in 15 excluded restrictions: (i) five quadratic differentiation measures along each di-

mension (one special regressors and four non-linear characteristics), and (ii) ten unique interaction

pairs.

The simulation results are summarized in Table 5. The top panel reports the average estimated

parameters (transformed) of the variance-covariance matrix, the middle panel reports the RMSE

associated with each parameter, and the bottom panel reports the averages of the IIA-test and the

Cragg-Donald rank test statistics. Both tests confirm once again that the instruments are strong,

and that the IIA hypothesis is easily rejected. The average bias and RMSE are also remarkably

small, despite the richness of the model. The bias and precision of the Choleski parameter estimates

are reproduced in the last three columns of Table 8 below. The differentiation IVs are able to

accurately identify both the magnitude and correlation in taste heterogeneity across consumers.

It is worth noting that to our knowledge this specification is substantially richer than any

random-coefficient model that has previously been studied with aggregate data by researchers,

20Similar interactions can be constructed with the local differentiation instruments:
∑

j′ 1(|dljt,j′ | < κl)d
k
jt,j′ . The

results are similar using this specification of the instruments, but we find that the quadratic form tends to be more
stronger.
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Table 5: Monte-Carlo simulation results for correlated random-coefficient specification with differ-
entiation IVs

Σ·,1 Σ·,2 Σ·,3 Σ·,4

E
st

im
at

es Σ1,· 4.003
Σ2,· -1.997 4.000
Σ3,· 1.997 -1.996 3.991
Σ4,· 2.010 -2.000 2.006 4.010

R
M

S
E

Σ1,· 0.228
Σ2,· 0.132 0.232
Σ3,· 0.156 0.145 0.217
Σ4,· 0.156 0.143 0.154 0.217

IIA test (F) 157.637
Cragg-Donald statistic (F) 474.053
Nb endogenous variables 10
Nb IVs 15

both in empirical applications and Monte-Carlo simulations. Although we obtain these results in

a “controlled” environment, this result confirms the idea in Berry, Levinsohn, and Pakes (1995)

and Berry and Haile (2014) that it is feasible to estimate very flexible substitution patterns using

aggregate data on market shares and product availability.

3.3 Endogenous prices

To study the performance of the Differentiation IVs when prices are endogenous we consider a

model with a single random-coefficient on price:

uijt = β0 + β1x
(1)
jt + (βp + λpνi) · pjt + ξjt + εjt, j,= 1, . . . , 15 and t = 1, . . . , 100. (31)

where ln νi ∼ N (0, 1).21 We use the following parameter values in the simulation: β0 = 50, βx = 2,

βp = −0.2 and λp = −4.

To generate a second simultaneity problem, we generate prices using a Bertrand-Nash pricing

game with single-product competitors:

p∗jt = cjt − σj(δt,p∗t ;λp)

[
∂σj(δt,p

∗
t ;λp)

∂p∗jt

]−1

(32)

Where, cjt = γ0 + x
(1)
jt γx + ωjt.

The marginal-cost function is assumed to be constant, and the cost-shock ωjt is observed by the

21Unlike the previous examples, we approximate the distribution of νi using a fixed sample of 100 pseudo random-
numbers.
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econometrician. We use this variable below to construct a price instrument. The data is generated

by repeatedly finding a solution to equation (32) for 1000 × 100 markets.22 This gives us 1, 000

independent panels to conduct our Monte-Carlo simulation analysis.

We follow the steps described in Section 2.2 to construct the Differentiation IVs. We first

construct an exogenous price index, p̂jt, using the predicted values from the linear regression of pjt

on the exogenous characteristic and the cost shifter ωjt:

p̂jt = π̂0 + π̂1x
(1)
jt + π̂2ωjt. (33)

We then construct the Differentiation IVs using the empirical distribution of differences in p̂jt and

x
(1)
jt . In particular, as before, we consider the two alternative specifications:

Quadratic Diff IV: zjt =

xjt, ωjt,∑
j′

(
d

(1)
jt,j′

)2
,
∑
j′

(
dp̂jt,j′

)2


Local Diff IV: zjt =

xjt, ωjt,∑
j′

1
(
|d(1)
jt,j′ | < sd1

)
,
∑
j′

1
(
|dp̂jt,j′ | < sdp̂

)
where d

(1)
jt,j′ = x

(1)
j′t − x

(1)
jt and dp̂jt,j′ = p̂j′t − p̂jt. Note that ωjt is added to the list of instruments

since we need two independent sources of variation to identify βp and λp (i.e. own cost shifters,

and cost and characteristics of rival products).

The simulation results are reproduced in Figure 3 and Table 6. In addition to the two sets of

instruments defined above, we also report the results using the “sum of rival characteristics” in

order to illustrate effect weak instruments in this setting with two sources of simultaneity.

Table 6b confirm the results obtained with the weak instrument specification in Section 1.3. The

test statistics associated the IIA hypothesis and Cragg-Donald rank-test are on average significantly

below standard critical values.23 Recall that the local identification condition by estimating the

reduced-form of the model:

pjt = zjtπ1 + e1
jt

∂σ−1
j (st,pt;λ

0
p)

∂λp
= zjtπ2 + e2

jt

To illustrate the dual role of the instruments in this context, we report the results of two first-

stage F tests: (i) one that simply regress price and the Jacobian on the exogenous variables, and

22The data-generating process for the marginal cost and characteristics is given by: ξjt ∼ N (0, 1), x
(1)
jt ∼ N (0, 1),

ωjt ∼ N (0, 0.1).
23Since the moments are weak, we use the Stock-Yogo critical values to evaluate the Cragg-Donald statistics (Stock

and Yogo (2005)). As we discussed in Section 1.3, this rank-test is valid in our non-linear context since we evaluate
the Jacobian function at the true value of the parameters.
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Table 6: Monte-Carlo simulation results for endogenous price specification

(a) Distribution of parameter estimates

(1) (2) (3) (4)
True Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum

bias se rmse bias se rmse bias se rmse

λp -4.00 0.02 0.27 0.28 0.02 0.53 0.55 1.03 158.25 2.10
βp -0.20 0.01 0.37 0.37 0.01 0.31 0.32 -0.67 201.29 1.38
β0 50.00 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.82 26.41 20.65
βx 2.00 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83

(b) Weak identification tests

(1) (2) (3)
IV = Local IV=Quadratic IV = Sum

Frequency conv. 1 1 0.94
IIA-test 109.48 53.90 1.88

p-value 0 0 0.34
1st-stage F-test: Price 191.80 442.10 138.94
1st-stage F-test: Jacobian 214.60 58.40 27.85
Cond. 1st-stage F-test: Price 252.23 479.96 7.92
Cond. 1st-stage F-test: Jacobian 280.31 82.44 6.19
Cragg-Donald statistics 170.19 54.45 4.09

Stock-Yogo size CV (10%) 16.87 13.43 13.43
Nb. endogenous variables 2 2 2
Nb. IVs 4 3 3

(ii) one that first “project-out” the variation of the other endogenous variable before computing the

first-stage F test. The second test was proposed by Angrist and Pischke (2009) and Sanderson and

Windmeijer (2016) to adjust the standard F-tests for IV cases with multiple endogenous variables.

The results highlight the importance of correctly measuring the weakness of the moment restrictions

as a whole.

In our example, the standard F-tests conducted using the sum of rival characteristics incorrectly

suggest that weak instruments is not a concern (i.e. 138.94 and 27.85). This is because one of the

instrument is very strong (i.e. cost shifter ωjt). However, once we account for the fact that we

have more than one parameters to identify with a single strong instrument, the conditional first

stage F-tests are in line with the results of the Cragg-Donald and the IIA tests; both F-tests are

significantly below the Stock-Yogo critical values on average.

Next, looking at columns (1) and (2) in Table 6b we see that both instruments constructed

using measures of differentiation eliminate the weak identification problem. This time however, the

“Local Differentiation IV” tends to perform significantly better than the “Quadratic Differentiation
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Figure 3: Distribution of estimated price random-coefficient parameter for alternative differentiation
instruments
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IV”. The two measures of weakness, the IIA-test and the Cragg-Donald statistic, are on average

roughly 2.5 times larger in column (1) than in column (2).

Table 6a summarizes the distribution of the estimated parameters across the three IV speci-

fications. Looking first at the weak IV panel, we see again that using weak instruments lead to

substantial loss in precision and large biases. The RMSE for λp is equal 2.10, and the average bias

is significantly above zero (1.03). This upward bias is partial offset by a “downward” bias in βp

(i.e. −0.67), but the net effect is positive: weak instruments in this example biases the slope of the

demand towards zero.

This bias is eliminated in panel (2) and (3) when we use the stronger differentiation IVs. The

RMSEs are also substantially reduced. Relative to the sum of rival characteristics specification,

we obtain a 7.5 improvement in precision for σ̂p with the local differentiation IV, and a 4 times

improvement with the quadratic differentiation IV.

Figure 3 illustrates this point graphically by plotting the distribution of σ̂p for the three specifica-

tions. As with the exogenous characteristics, weak instruments lead to a non-gaussian distribution

of the parameters, characterized by large outliers and a mass around zero. The two other dis-
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tributions are symmetric and bell-shape, centered around the true parameter, and do not exhibit

outliers. The comparison between the spread of the distributions with “Quadratic” and “Local”

Differentiation IVs also illustrate the gain in precision from using a stronger set of moments.

It is unclear why the local differentiation measure performs better the quadratic measure in this

example. The conditional first-stage test for price in Table 6b suggests that it is not the case that

the number of local competitors is a better predictor of prices; if anything prices appear to be more

correlated with the sum of square of characteristic differences (i.e. F = 479.96 versus F = 252.23).

We conjecture that the performance difference is due to two factors. First, unlike in the first

example, the distribution of the random-coefficient is not symmetric (due to the log-normality

assumption), and so it is possible that the second-order polynomial is not an accurate approximate

the reduced-form of the model. Second, it is important to note that the heuristic approximation

associated with using p̂jt instead of pjt, introduces measurement error in the instruments. The sum

of square of dp̂jt,j′ tends to amply this error since the instrument is proportional to the variance of p̂jt.

In contrast, measurement error in p̂jt leads to a random mis-classification of firms between “local”

and “non-local” competitors, but does not systematically bias the number of local competitors. The

quadratic differentiation IV is therefore more sensitive to measurement error, which could explain

why those moments are weaker on average.

3.4 Endogenous Characteristics and Natural Experiments

An often expressed criticism of the main identifying assumption in Berry et al. (1995), is that firms

endogenously choose product characteristics (observed and unobserved) in response to changes in

the structure of the market. This violates Assumption 1 either because of an endogenous selection

of products, and/or because of the a contemporaneous correlation between ξjt and the attributes

of own and rival products.24 This invalidates the use of the entire distribution of characteristic

differences to identify substitution patterns.

An alternative approach is to look for natural experiments that exogenously change the menu

of product characteristics available to consumers. Such experiments can be induced directly by

researchers (e.g. Conlon and Mortimer (2015)), caused by exogenous technology changes that

generate the shakeout of an industry (e.g. Houde (2012)), or by government regulations that

generate suboptimal product offering (e.g. zoning). To illustrate this, consider the following mixed-

logit Hotelling demand model:

uijmt =

ξjmt − λ(νi − xjmt)2 + εijmt If j > 0,

εijmt If j = 0.

where j = 1, . . . , 15 indexes products, m = 1, . . . , 100 indexes markets, and t = 0 or 1 indexes the

24See Ciliberto et al. (2016) for a recent examination of this problem.
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pre/post natural experiment periods. In this example, the non-linear characteristic of products,

xjmt, measures their location in the product space, and while the random-coefficient, νi, measures

the “ideal” address of consumers. We assume that both variables are uniformly distributed between

0 and 2. The goal is to estimate the travel cost of consumers: λ.

We consider a natural experiment associated with the entry of a new product in each market

at location x∗ in the post-period (i.e. t = 1). Within each market, distance to x∗ measures the

strength of the “treatment”. The characteristics of incumbent products are constant across periods.

We introduce a correlation between ξjmt and xm as follows:

E(ξjmt) = 0 and corr(ξjmt,EDjm) = a < 0

where EDjm =
√∑

j′(xjm − xj′m)2 is the Euclidian distance of incumbent product j. The pa-

rameter a creates a standard simultaneity problem: products facing close substitutes have higher

unobserved quality. Since characteristics are constant across the two periods, this correlation can

be absorbed by conditioning on product/market fixed-effects. Assumption 3 formalizes this as-

sumption.

Assumption 3. The change in the unobserved quality of products has mean zero conditional on

the observed menu of characteristics:

E [∆ξjm|xmt] = 0,∀t = 0, 1

where ∆ξjm = ξjm1 − ξjm0.

To construct the instruments, we consider two distance measures similar to the Differentiation

IVs discussed above:

w1
jm = 1(|xjm − x∗| < κ)

w2
jm = (xjm − x∗)2

where the threshold κ is defined as the standard deviation of xjm across all products/markets. Let

zjm = {1, w1
jm, w

2
jm} denotes the instrument vector. This leads to the following moment condition:

gn(λ) =
1

n

∑
m

∑
j

[ρj(sm1,xm1;λ)− ρj(sm0,xm0;λ)] · zjm = ∆ρ(λ)Tz/n

where n is the number of unique market/product observations.

Using this specification, the structural parameters of the model are identified solely from the

quasi-experimental variation. In particular, the reduced-form of the GMM problem corresponds to

a difference-in-difference regression. To see this, note that the Gauss-Newton regression associated
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Figure 4: Monte-Carlo simulated distribution of the travel cost parameter estimates with endoge-
nous product locations

(a) Difference-in-Difference
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0
.5

1
1.

5
2

D
en

si
ty

1 2 3 4 5
Parameter estimates

Kernel density estimate Normal density

Average bias = -2.113. RMSE = 2.123. Standard-deviation = .206.

Data generating process: xjm ∼ U [0, 2], ξjmt = ξ̄jm + ∆ξjmt, where ξ̄jm = −0.25
(
EDjm − EDm

)
+ ζjm, ζjm ∼

N(0, 0.5) and ∆ξjmt ∼ N(0, 0.25). Consumer addresses: νi ∼ U [0, 2] approximated using 100 equally spaced grid
points. Number of Monte-Carlo replications: 1,000. Sample size: M = 100, Jm0 = 15 for all m, Jm1 = 16 for all m,
T = 2.

with the non-linear GMM problem is given by:

Structural equation: ∆ρj(λ̂) = b0 + b1∆Jjm(λ̂) + Error

First-stage: ∆Jjm(λ̂) = π0 + π1w
1
jm + π2w

2
jm + ujm

where ∆Jjm = ∂σ−1
j (sm1,xm1; λ̂)/∂λ− ∂σ−1

j (sm0,xm0; λ̂)/∂λ is the change in the Jacobian of the

inverse-demand. Since w1
jm is an indicator variable equal to one for products that are “closest” to

the new entrant, π1 measures the average change in the slope of the inverse demand for “treated”

products, relative to products in the same market that are less exposed to the new entry (i.e.

“control” group). Similarly, the coefficient π2 allows the intensity of the treatment effect to vary

with distance.

Figure 4 illustrates the ability of this identification strategy to eliminate the simultaneity bias

associated with the endogenous location of products. The dash curves correspond to the Kernel

density of the parameters estimated using the “difference-in-difference” moment conditions (4a),

or the full “Differentiation IVs” moments (4b).25

The data generating process is designed so that the correlation between ξjmt and the Euclidian

distance between rival products is −0.25. As Figure 4b illustrates, this leads to an attenuation

25The Differentiation IVs specification combines the sum of square of characteristic differences (i.e. quadratic IV),
and the number of competing products within one standard-deviation (i.e. local IV).

36



bias in the estimate of the travel cost parameter obtained using standard instruments (λ̂ ≈ 1.89,

compared to λ0 = 4). Since products located in “denser” regions of the product space have higher

quality, the GMM specification that exploits variation in the distance to all products wrongly infer

that consumers have a small disutility from distance. Figure 4b illustrates that the difference-in-

difference moment conditions eliminate this bias. The distribution is centered around λ0 = 4, and

the average bias is less than 1% of the parameter value.

Comparing the two distributions, it is important to note that by exploiting solely the variation

created by the entry of a new product, the difference-in-difference GMM estimator is less precise,

and the distribution of λ̂ is less well approximated by the normal density than the specification that

uses the larger set of instruments. In Figure 4b the p-value associated with Shapiro-Wilk normal test

is 11%, compared to less than 1% in Figure 4a. This suggests that the asymptotic approximation

used to conduct inference on λ is less likely to be valid when the model is estimated solely using

quasi-experimental variation; therefore requiring larger sample sizes or inference methods that are

robust to weak identifications.

3.5 Comparison with the Optimal IV Approximation

Finally, we conclude this section by comparing the performance of the Differentiation IVs, with

the approximation to the optimal IV proposed by Berry et al. (1999) and Reynaert and Verboven

(2013).

Recall that, abstracting away from concerns related to heteroskedasticity, the instrument vector

that minimizes the asymptotic variance of the parameter estimates is given by the conditional

expectation of the jacobian of the residual function (Amemiya (1977), Chamberlain (1987)):

A∗j (xt) = E

[
∂ρj(st,xt;θ)

∂θ

∣∣∣xt] =

{
−xjt, E

[
∂σ−1

j (st,x
(2)
t ;θ)

∂λ

∣∣∣xt]}

This is very intuitive: Because the asymptotic distribution of (Σ,β) is derived from a first-order

approximation of the residual function, the most efficient instruments correspond to the best-

predictor of the slopes of that function with respect to each of the parameters.26

This theoretical lower-bound cannot be achieved in practice since the model is semi-parametric

in ξjt. Rather than using non-parametric regression techniques to estimate A∗j (xt) (as in Newey

(1990)), Berry et al. (1999) proposed the following heuristic approximation to the optimal IV:

E

[
∂ρj(st,x

(2)
t ;θ)

∂θ

∣∣∣xt] ≈ ∂ρj(st,x
(2)
t ;θ)

∂θ

∣∣∣∣
ξjt=0,∀j,t

= Ãj(xjt|θ). (34)

Since the instrument vector depends on θ, users must first obtain an estimate of the parameters,

26See Newey (1993) for an illumination discussion.
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denoted by θ1. This leads to a two-step estimator: (i) estimate θ1 by GMM using instrument

vector zjt, and (ii) construct Ãj(xjt|θ1) and estimate θ̂ by GMM. The second step corresponds to

a just-identified system of moment conditions.

When prices enter non-linearly in the model, a similar heuristic can be used to avoid taking an

expectation over the second set of endogenous variables:

E

[
∂σ−1

j (st,pt,x
(2)
t ;θ)

∂λ

∣∣∣xt,wt

]
≈
∂σ−1

j (st,pt,x
(2)
t ;θ)

∂λ

∣∣∣∣
pjt=p̂jt,ξjt=0,∀j,t

= Ãj(xjt|θ), (35)

where p̂jt ≈ E(pjt|xt,wt) is a “reduced-form” model for prices independent of ξjt. Berry et al.

(1999) proposed to compute p̂jt by solving the equilibrium pricing game at the initial estimate θ1,

using only observed/pre-determined variables. Reynaert and Verboven (2013) uses linear regres-

sions and the existence of a price instrument to compute p̂jt. As discussed above, we follow this

latter approach in our simulations.

Reynaert and Verboven (2013) conducted a series of Monte-Carlo simulations to illustrate that

this heuristic approximation to the optimal IV leads to substantial efficiency gains over the standard

instruments proposed in Berry et al. (1995) (i.e. sum of rival characteristics). One remaining ques-

tion however is to what extent the approximation remains valid when the first-stage estimates are

not consistent, which is the case for instance with weak instruments. To illustrate when consistency

is likely to matter, we first study two simple mixed-logit models: (i) normal random-coefficient,

and (ii) Hotelling. These two models satisfy our “linear-in-characteristic” random-coefficient as-

sumption and have the following indirect-utility function:

Normal RC: uijt = δjt + ληix
(2)
jt + εijt

Hotelling: uijt = δjt − λ
(
ηi − x(2)

jt

)2
+ εijt.

where ηi ∼ N (0, 1) and x
(2)
jt ∼ N (0, 1).27 For our purpose, the key distinction between these two

models is that the value of λ in the “Normal RC” model only affects the magnitude of the elasticity

of substitution, and not the relative ranking of each products’ cross-elasticty (which is function

only of x’s). In contrast, in the Hotelling model, when λ goes from positive to negative, the identity

of the “closest” competitor changes from the “closest” x to the “furthest” x. We use this stark

distinction between the two models to illustrate how consistency of the first-stage, λ1, affects the

performance of the heuristic approximation.

Table 7 summarizes the results of 1,000 Monte-Carlo replication simulations. The first five

rows correspond to different values of the initial parameter used to evaluate the jacobian. In both

27The Hotelling mixed-logit model is linear in characteristic: uijt = δjt − λ
(
ηi − x(2)jt

)2
+ εijt = δjt − λη2i +

λ
(
x
(2)
jt

)2
− 2ληix

(2)
jt + εijt
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Table 7: Optimal IV approximation with alternative initial parameter values

Normal RC Hotelling
λ1 bias rmse λ1 bias rmse

Optimal IV approx.:
(1) 0.5 0.001 0.027 4 -0.003 0.140
(2) 1.5 0.001 0.026 2 -0.004 0.126
(3) 2 0.001 0.026 0 -0.079 0.509
(3) 2.5 0.001 0.026 -1 -0.344 1.687
(4) 3 0.002 0.028 -2 -0.282 1.254

Differentiation IV — 0.001 0.031 — 0.017 0.310

specifications the true value of parameter is λ0 = 2. The numbers in bold correspond to GMM

results obtained by setting the first-stage parameter equal to the true parameter value . The rest of

the rows correspond to different levels of inconsistencies. For the “Normal RC” mode, we consider

a grid between 0.5 and 3. For the Hotelling model, we consider grid between −2 (wrong sign) and

4.

Looking first at the “Normal RC” model, the performance of the optimal IV approximation

estimator is remarkably robust to inconsistencies in the first-stage parameter values. The efficiency

gains from using the “true” parameter value are fairly small (i.e. 0.026 vs 0.028). This is consis-

tent with the results presented in Reynaert and Verboven (2013) who focus only on models with

multiplicative random-coefficients.

The results from the “Hotelling” specification are very different. The first two rows show that

using using an inconsistent first-stage parameter with the correct sign does not reduce dramatically

the precision of the estimates (i.e. 0.14 vs 0.126). However, using first-stage values that are

inconsistent and have the wrong sign lead to large attenuation biases, and very imprecise estimates.

The RMSE in the last two rows are more than 10 times larger than in specification (2) (i.e. true

σ1). This suggests that the consistency of the first-stage estimate is important for the validity of

the heuristic approximation approach, especially when the substitution patterns depend on the sign

of the parameter values.

The last row of Table 7 reports the results obtained with the Differentiation IVs. To obtain

these results we combine the sum of square of characteristic differences, and the number of local

competitors. When using unbiased first-stage parameter, the optimal IV approximation improves

the precision of the estimates 60% in the Hotelling model, and by 17% in the Normal RC model.

However, these efficiency gains are quickly eliminated when the first-stage parameter is set far from

θ0. This is an important advantage of the Differentiation IVs, since their exact structure does

not depend on the availability of consistent estimates, or on prior the knowledge of the model of

differentiation (e.g. hotelling versus normal).

The previous example is very stylized. Another setting in which the sign and magnitude of
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Table 8: Monte-Carlo simulation results for correlated random-coefficient specification with optimal
IV approximation and inconsistent initial parameter values

Choleski Opt. IV: θ1 ∼ N(0, 1) Opt. IV: θ1 ∼ N(0, 4) Diff. IV: Quadratic
matrix True bias rmse se bias rmse se bias rmse se

(1) (2) (3) (4) (4) (5) (6) (7) (8) (9)

log c11 0.69 0.00 0.22 5.42 0.01 1.22 11.92 -0.00 0.03 0.03
log c22 0.55 -0.01 0.19 2.50 -0.16 2.36 192.70 -0.00 0.04 0.04
log c33 0.49 -0.02 0.15 0.46 -0.44 2.69 ++ -0.00 0.04 0.04
log c44 0.46 -0.22 1.83 ++ -1.78 5.57 ++ -0.00 0.04 0.04
c21 -1.00 0.01 0.47 4.51 0.03 0.77 781.85 0.00 0.06 0.06
c31 1.00 0.00 0.33 0.86 -0.02 0.63 23.48 -0.00 0.07 0.07
c32 -0.58 0.02 0.27 2.69 0.03 0.56 285.80 0.00 0.07 0.08
c41 1.00 0.00 0.23 1.37 0.00 0.58 333.93 0.00 0.07 0.07
c42 -0.58 0.01 0.23 2.69 0.04 0.50 484.88 0.00 0.08 0.08
c43 0.41 0.00 0.23 1.59 0.03 0.52 ++ 0.00 0.08 0.08

θ determines substitution patterns is the correlated random-coefficient model studied in Section

3.2. To illustrate the importance of using consistent estimates in the first-stage, we implement

the optimal IV approximation using pseudo-random random values that are not centered around

the truth. The results are summarized in Table 8. In columns (2)-(4), each element of θ1 is

drawn from a standard-normal distribution, while columns (4)-(6) they are drawn from a normal

distribution with a standard-deviation of 2. The last four rows reproduce the results obtained using

the Differentiation IVs discussed above.

The results are in line with single-dimension example. Using inconsistent parameter estimates

to approximate the optimal instruments lead to a weak identification problem, associated with very

noisy and often biased parameter estimates. In addition, as we increase the variance of θ1, the

precision and bias of θ̂ both increase substantially. The contrast with the Differentiation IVs is

quite striking: the average RMSEs are roughly 5 times smaller with the Differentiation IVs than

with the less noisy optimal IV approximation.

Overall, these results suggest that using consistent first-stage estimates is important in order

for the optimal IV approximation to perform well, and therefore that using strong first-stage in-

struments is crucial to estimate θ1. For instance, a valid strategy to improve the efficiency of

the estimates is to obtain first-stage estimates using the instruments proposed in this paper, and

then construct an approximation to the optimal IV. The second-stage can be conducted using the

heuristic approximation proposed by Berry et al. (1999) or Reynaert and Verboven (2013), or using

non-parametric regressions as discussed in Newey (1993).

We illustrate this two-step approach using the model with endogenous prices studied in Section

3.3. Table 9 summarizes the results. The top-panel corresponds to the GMM estimates obtained

using three alternative Differentiation IV: (i) local competition, (ii) sum of square of characteristic
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Table 9: Monte-Carlo simulation results for endogenous price specification and optimal IV approx-
imation

Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum
True bias se rmse bias se rmse bias se rmse

1s
t-

st
ag

e λp -4 0.02 0.27 0.28 0.02 0.53 0.55 1.01 2.66 2.09
β0 50 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.63 26.48 20.46
βx 2 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83
βp -0.2 0.01 0.37 0.37 0.01 0.31 0.32 -0.66 1.76 1.37

2
n

d
-s

ta
ge λp -4 0.00 0.24 0.23 0.00 0.24 0.23 0.01 0.26 0.31

β0 50 -0.07 3.99 3.84 -0.06 3.72 3.65 0.05 4.32 4.61
βx 2 -0.01 0.48 0.47 -0.01 0.41 0.41 0.03 0.52 0.51
βp -0.2 0.01 0.36 0.36 0.00 0.31 0.32 -0.03 0.40 0.40

differences, and (iii) sum of rival characteristics. In each specification we use the residual cost-shock,

ωjt, as a price instrument. In the bottom-panel, we use the GMM results from the corresponding

specification to construct an approximation to the optimal IV, as described in equation (34). Each

entry is averaged over 1,000 Monte-Carlo replications.

The results suggest that for the most part the Berry et al. (1999) approximation successfully

correct the weak identification problem. For instance, the sum of rival characteristics specification

is associated with very noisy estimates of λp in the top panel, but the average bias and RMSE are

mostly comparable across columns in the bottom panel. Similarly, the RMSE of λp estimated with

the quadratic Differentiation IVs is roughly 50% smaller in the second-stage. The efficiency gains

are much smaller the first specification, mostly because the local Differentiation IVs is already a

very strong instrument (see Table 6b).

Across columns, we see that using stronger instruments in the first stage lead to more precise

results in the second stage (i.e. RMSE = 0.31 vs 0.23). This should be thought of as a lower

bound on the efficiency gains of using strong versus weak first-stage instruments. As we saw in the

“Hotelling” vs “Normal RC” examples above (see Table 7), the multiplicative random-coefficient

model is not very sensitive to the value first-stage parameter, and the efficiency loss from using

inconsistent initial parameter values is small. Also, Reynaert and Verboven (2013)’s simulation

results suggest that the heuristic approximation is becoming weaker as the the number of random-

coefficients increases beyond four. Since we consider only a single-dimension example, it is likely

that the efficiency gain from using stronger first-stage instruments would be larger as the number

of random-coefficients increases. Importantly, this is not the case for the Differentiation IVs that

we proposed (see Tables 3 and 5).
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A Proof of Propositions 1 and 2

A.1 First Proposition

Proposition 1 can be restated as follows.

Proposition 3. In the linear characteristics model the market inverse function can be expressed
as

D−1
j (s0, s1, . . . , sJ ;X) = G

(
sj , {sk, djk}k 6=j

)
+ C

where djk = xk − xj and C is a constant that is common to all products j = 1, . . . , J .

The proposition implies that all the cross sectional variation in the inverse function comes from

the component

G
(
sj , {sk, djk}k 6=j

)
= G (sj , Fj (s, d))

where we have equivalently expressed the second argument as the empirical distribution of (sk, djk)

among products k 6= j (which includes the outside good 0 in this sample). It is important to note

that from this empirical distribution, we can only recover the set of the differences djk but cannot

isolate the difference with respect to any particular product, and also cannot recover xj itself from

this distribution (because we cannot identify the outside good in this set). This brings to light that

the cross sectional variation in the inverse function does not actually depend on a product’s level

of own xj , but rather the distribution of differences djk for k 6= j this product faces.

We will spend the rest of this section proving the result.

Step 1

The first step is to re-parameterize the demand function Dj (δ1, . . . , δJ) in terms of

tj =
exp (δj)∑J
l=0 exp (δl)

.

The advantage of this re-parameterization is that it is an alternative location normalization (re-

quiring that all products t’s to sum to one) that does not create an asymmetry between the outside

good 0 and the inside goods j > 1. This will be analytically more convenient than the standard

normalization of δ0 = 0. But they are mathematically identical. In particular observe that

Tj = log (tj) = δj + C

where C is a constant that is common to all products in a market (that can be solved by recognizing

log t0 = −C).
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We can thus express demand in terms of this re-parameterization, i.e.,

uij = u (tj , xj , θi) = Tj +
K∑
k=1

σkvikxjk + εij

and Dj (t0, . . . , tJ) =∫
1 [u (tj , xj , θ) ≥ u (tk, xk, θ) ∀k = 0, . . . , J, k 6= j] dF (θ) . (36)

We then have that

Dj (t0, . . . , tJ) = Dj (δ1, . . . , δJ) .

(because an additive constant does not change preferences). Moreover we have that

logD−1
j (s0, . . . , sJ) + C = D−1

j (s0, . . . , sJ) .

Our strategy moving forward is to show that

D−1
j (s0, . . . , sJ) = D−1

(
sj , {sk, djk}k 6=j

)
. (37)

Then defining G = logD−1 will give us the Theorem.

Step 2

We now establish 3 properties of Dj (t1, . . . , tJ) : symmetry, anonymity, and translation invariance.

Each of these properties will then be preserved by the inverse mapping D−1
j . To establish these

properties let us define a product j’s state ωj as

ωj = (tj , xj)

and note that

Dj (t0, . . . , tJ) = Dj (ωj , ω−j) .

The following two properties are relatively straightforward to show using the definition of demand

(36) and the symmetry of the idiosyncratic errors (??). The first property is

Definition 1. The function Dj (ωj , ω−j) is symmetric if Dj (ωj , ω−j) = Dk (ωj , ω−j) for any k 6= j.

This implies we can write Dj (ωj , ω−j) = D (ωj , ω−j).

Definition 2. The function D (ωj , ω−j) is anonymous if D
(
ωj , ωρ(−j)

)
where ρ is any permutation

of the indices −j.
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We note that symmetry and anonymity are the same properties that Doraszelski and Pakes

(2007) use to reduce the dimensionality of value functions in dynamic games. These properties can

be established for the demand functions Dj .
There is one last property of demand we will exploit which is the following:

Definition 3. The function D (ωj , ω−j) is translation invariant if for any c ∈ RK we have that

D
(
ωj + (0, c) , ω−j + ~(0, c)

)
= D (ωj , ω−j)

where ~(0, c) is the J dimensional vector consisting of elements (0, c).

This property can be established using the linearity of the characteristics utility uij in xj . It is

important to note that the second argument in D includes the outside good.

Step 3

Now define the relevant state for the inverse mapping as

mj = (sj , xj) .

Then

D−1
j (s0, . . . , sJ) = D−1

j (mj ,m−j) .

Using the above properties of the demand function D, we can establish precisely the same properties

for D−1
j , namely symmetry, anonymity, and translation invariance. Thus we have that

D−1
j (mj ,m−j) = D−1

(
mj + (0,−xj) ,m−j + ~(0,−xj)

)
= D−1

(
sj , {(sj , djk)}k 6=j

)
where the first equality follows from symmetry and translation invariance, and the second equality

follows from anonymity. We have thus succeeded in establishing (37) and hence Theorem 3.

A.2 Second Proposition

Let X = (x0, . . . , xJ) be the entire market menu of product characteristics. We assume here for

simplicity that X is fully independent of ξ = ξ1, . . . , ξJ . Consistent with the symmetry of the model,

the distribution Fξ is assumed to have a symmetric distribution. Then we have the following result

which suffices to establish Proposition 2 in the paper.
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Proposition 4. The conditional expectation of interest in the model can be expressed as

E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| X
]

= E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| {djk}k 6=j

]
= E

[
D−1

(
sj , {(sj , djk)}k 6=j

)
| Fj (d)

]
where Fj (d) is the empirical distribution of the sample of differences {djk}k 6=j.

We will only sketch here the main ideas of the proof (with details to be filled later). Assume

that the djk can be canonically ordered (based on some complete ordering in RK , such as the

lexicographic ordering) such that d̃j1 ≤ · · · ≤ d̃jK where d̃jl is the lth largest from the {djk}k 6=k.
Then we can express

D−1
(
sj , {(sj , djk)}k 6=j

)
= D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
where s̃j0 is sj and s̃ji is the market share corresponding to the product with difference d̃ji. Now

it can be shown that the distribution

Fs̃j0,s̃j1,...,s̃jJ |X = Fs̃j0,s̃j1,...,s̃jJ |d̃j1,...,d̃jJ .

That is d̃j1, . . . , d̃jJ is a sufficient statistic of the market menu X to determine the distribution of

the shares (s̃j0, . . . , s̃jJ). We then have that

E
[
D−1

(
sj , {(sj , djk)}k 6=j

)
| X
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
| X
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃j1, . . . , d̃jJ

)
| d̃j1, . . . , d̃jJ

]
= E

[
D−1

(
sj , {(sj , djk)}k 6=j

)
| Fj (d)

]
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